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The reaction process A + B ---, ~ is modeled for ballistic reactants on an infinite 
line with particle velocities vA = c and v a = - c  and initially segregated condi- 
tions, i.e., all A particles to the left and all B particles to the right of the origin. 
Previous models of ballistic annihilation have particles that always react on 
contact, i.e., pair-reaction probability p = 1. The evolutions of such systems are 
wholly determined by the initial distributions of particles and therefore do not 
have a stochastic dynamics. However, in this paper the generalization is made to 
p ~< 1, allowing particles to pass through each other without necessarily reacting. 
In this way, the A and B particle domains overlap to form a fluctuating, finite- 
sized reaction zone where the product ~ is created. Fluctuations are also 
included in the currents of A and B particles entering the overlap region, 
thereby inducing a stochastic motion of the reaction zone as a whole. These two 
types of fluctuations, in the reactions and particle currents, are characterised by 
the intrinsic reaction rate, seen in a single system, and the extrinsic reaction rate, 
seen in an average over many systems. The intrinsic and extrinsic behaviors are 
examined and compared to the case of isotropically diffusing reactants. 

KEY WORDS: Ballistic annihilation; reaction process; reaction zone; non- 
equilibrium statistical mechanics; exactly solved model. 

I. I N T R O D U C T I O N  

A detailed understanding of reaction systems is an essential ingredient 
for the study of a broad range of problems, tt~ In systems of many inter- 
acting reactants, it often happens that knowledge of the precise physical 
mechanism whereby reactions occur is irrelevant in determining the macro- 
scopic behaviour. The most important factors are the number of different 
reacting species that combine in a single reaction, the type of motion that 
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each of these species performs and the initial/boundary conditions in 
the vessel containing the reactants. Thus, simple theoretical models that 
mimic these elements can be used to study real systems as diverse as 
exciton dynamics in polymer chains, ~2) monopole annihilation in the 
early universe ~3) as well as the more conventional chemical processes. ~4) 
However, even such highly simplified models can prove difficult to analyse. 
This is especially true if the reactions are not fully reversible as the methods 
of equilibrium statistical mechanics cannot be used, due to the lack of 
detailed balance. 

Many different, idealised reaction systems have been studied analyti- 
cally over the last few decades ~-z2) usually for the case of fully irre- 
versible reactions. These include same species (hA ~ ~ )  and multi-species 
(Zk nkAk ~ ~ )  processes, where nk of each distinct Ak species combine to 
form a single inert product ~ .  The multi-species reaction systems exhibit 
particularly rich behaviour because reactions can only occur at places 
where all the necessary constituents are presentmso called reaction zones. 
Often, due to the initial/boundary conditions or spontaneous symmetry 
breaking ~r3'14~ each species of reactant is largely confined to its own 
domain. The places where these domains overlap usually takes up only a 
small part of the whole system, often causing the net reaction rate to differ 
drastically from that predicted by the mean-field-like rate equation. Such 
behaviour can give rise to complicated structures, and is of particular 
interest in the context of pattern formation and growth determination in 
organisms. ~23~ The physics of multi-species reaction processes is, therefore, 
largely determined by activity in and around the reaction zones. The 
important factors being the way reactants flow from their respective 
domains into the overlap region as well as the behaviour of the reaction 
mix inside the reaction zone. 

In this paper a model of the two-species system A + B ~ ~ is intro- 
duced for the case of ballistically moving reactants and a pair-reaction 
probability less than one. The model is then solved exactly, allowing an 
analytic study of the dynamic reaction zone formed at the overlap of the 
A and B domains. However, before describing the model in detail two 
important statistical quantities associated with the reaction zone are 
defined. 

A. The Intrinsic and Extrinsic Reaction Rates 

A comprehensive analysis in the RG framework for the two-species 
A + B ~ ~  reaction system with diffusive reactants tl2~ identified two 
distinct sources of fluctuations affecting the behaviour of the reaction zone, 
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first inside the reaction zone itself and second in the currents of particles 
entering the reaction zone. 

The shape and size of the reaction zone is determined by the typical 
lifetimes and motions of reactants in the overlap region. These lifetimes in 
turn depend on the fluctuating local densities of reactants, as well as the 
reaction probability for an interacting pair of A and B particles. As the 
density fluctuations will be caused (in part) by reactions that have already 
occurred, the reaction rate can become highly correlated both spatially and 
temporally. This behaviour in the overlap region leads to the following 
definition for the intrinsic reaction rate. 

�9 The intrinsic reaction rate ~l~(x~, t) measured at a distance x~ from 
the centre of the overlap region at time t, is the typical spatial reaction rate, 
i.e., productionrate of ~ particles per unit time per unit space, seen in a 
single realization of the system's evolution. The intrinsic reaction rate 
characterizes the intrinsic reaction zone~the  instantaneous reaction zone 
formed where the A and B domains overlap. 

A second source of fluctuations can come from the A and B currents 
that flow into this (intrinsic) reaction zone. Even if these currents are 
on average equal in magnitude, any fluctuations about the average will 
contribute a noisy component to the reaction zone's motion, i.e., it will 
move stochastically about its expected position. Hence, given some initial 
conditions only a probabilistic statement can be made about the reaction 
rate at some later place and time (x, t). This suggests the definition of a 
second quantity, the extrinsic reaction rate. 

�9 The extrinsic reaction rate ~le(x, t) is defined as the probability 
density for reactions to occur at a time t and position x given some initial 
distribution function for the particles' positions. Therefore, ~ e  is the 
expected reaction rate found by averaging over all allowed realizations of 
the system's evolution. 

Models with ballistically moving reactants have been extensively 
studied in the context of the reaction kinetics in an ideal gas, where the 
mean free path of the reacting particles is similar to their separation (6-8) In 
particular the two-species case, with particles A and B having velocities 
v a = +c  and v s = - c  respectively, has been studied with homogeneous 
initial conditions, i.e., each Species initially r~/ndomly placed throughout the 
infinite line. More recently, the initial conditions of segregated particles was 
studied(9. ~0) with the As initially to the left and the Bs to the fight of the 
origin, again with reactants that always annihilate on contact. The initial 
positions for each species of particle (confined to their own domains on 
either side of the origin) were chosen to be random, thereby introducing 
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fluctuations into the particle currents flowing into the reaction zone. By 
averaging over all initial distributions the form of the extrinsic reaction rate 
was derived and shown to be Gaussian. However, because there can be no 
reaction fluctuations in this model (the particles always annihilate on con- 
tact) the A and B domains never overlap and the instantaneous reaction 
zone has effective width zero. Also, as the reactants move ballistically the 
system does not have a genuinely stochastic evolution, i.e., once the initial 
conditions (the particle positions) are fixed so is the system's future. 

This model has a generalisation to the case of arbitrary reaction 
probability; this is the general model introduced below. The fluctuations 
in the particle streams can be retained and combined with the fluctuations 
in the (now) finite-sized overlap region. This then allows the intrinsic and 
extrinsic behaviour of the A + B ~ ~ reaction system to be studied analyti- 
cally. 

B. The Definition of the Model 

The model consists of a one-dimensional continuous space in which 
two species of reactants, A and B particles, move with fixed velocities 
vA = + c and vs = - c ,  see Fig. 1. Initially, the reactants are separated, i.e., 
at time t = 0  A particles are distributed in the interval [ - o o "  0] at posi- 
tions (Y l, Y2"'" ) and the B particles are in the interval [0: oo ] at positions 

time (i) Particle World  Lines. 

" ,  _" ," , , ' A '  

y, y~ y~ y, I z,z~ z 3 z 4 

A particles space B particles 

time (ii) The Mapped System. 
steps 

! I 

4 ', ' 'r 

3 3  " i ~ i - "  
�9 , . . ,  I 4 

m 2 . . . . . . . . . .  

1 2 3 4 

B particle lattice 

Fig. 1. (i) A realisation of the model described in Section 1. The solid lines are paths of 
particles in space and time, with the dotted lines the trajectories annihilated particles would 
have taken. The A and B particles start at positions Ym and z, respectively and move with 
fixed velocities vA-  c and vB= - c .  An intersecting pair of particles either annihilates (prob- 
ability p) or continues unaffected (probability q =  1 - p ) .  (ii) The simplified, mapped system 
described in Section 2. At unit time steps A particles are "shot" through the B lattice, passing 
through each occupied site (with the same microscopic reaction probabilities as above). 
A reaction occurring at a site produces a vacancy, and it is the statistics of these vacancies 
that is used to derive P(m, n), the pair-reaction probability. 
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(Z l, Z2"-- ). The subscripts on Ym and z n refer to the relative initial order of 
the particles counted from the origin. Because of the ballistic motion of the 
reactants, the trajectories of the particles retain their initial ordering for all 
time. 

Two different distributions for {y} and {z} will be considered, first 
equally-spaced reactants (Section 3) and second, random positions of the 
reactants (Section 4). For both cases the average density is chosen to be Q, 
leading to average particle currents of _ cQ. However, the initial conditions 
studied in Section 4 will be shown to introduce Gaussian fluctuations 
about these average values. 

The position x and time t that the m th A and n th B particles' 
trajectories intersect are 

x = (Ym + Z . ) /2  t =  (Z n - -  ym)/2C (1) 

When such an (m, n) pair of reactants' trajectories meet, there are three 
distinct events that can occur. 

�9 If both reactants still occupy their trajectories a reaction can occur 
with probability p. If a reaction occurs both particles are removed from the 
system and a ~ product particle is considered to have been deposited at 
the point of annihilation. The ~ merely serves as a marker and plays no 
further role in the evolution of the system. 

�9 If both reactants are still travelling along their trajectories then with 
probability q = ( 1 - p )  no reaction occurs and the particles continue 
unaffected. 

�9 If one of the particles has previously been annihilated, i.e., one 
trajectory is unoccupied, the other particle continues unaffected with prob- 
ability 1. (Of course, if neither particle is present no change occurs when 
the empty trajectories cross.) 

Thus, two distinct sources of fluctuations are included in this model, 
in the reactions (if p < 1) and in the currents of particles flowing into the 
reaction zone (if {y} and {z} have random elements). Hence, the system 
models a finite-sized stochastically moving reaction zone, with measurable 
intrinsic and extrinsic behaviour. However, - it is clear that this model 
represents a special case, in that the two sources of noise are uncoupled. 
The fluctuations in the trajectories are quenched at t =0,  and the prob- 
ability that an (m, n) pair annihilates depends only on the total number 
of trajectories crossed by each particle, and not the trajectories' exact 
positions. This uncoupling of fluctuations allows the probability density 
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for an (m, n) pair to react at (x, t) to be written as the product of two 
independent distributions 

~(m, n, x, t) = P(m, n) CBm.(X, t) 

where P(m, n) is the probability for an (m, n) pair to mutually annihilate 
and (r t) is the probability density for the trajectory intersections (1). 
The calculation of the total annihilation probability can therefore be 
decomposed into, (i) a counting problem for the integer variables (m, n), 
and (ii) the derivation of the distribution functions for the continuous 
random numbers {y} and {z}. 

The remainder of the paper is structured as follows. In Section 2 the 
probability of pair annihilation P(m, n) is derived (12) by mapping the 
model onto a simple system of target particles on a one-dimensional lattice. 
The behaviour'of the lattice system is then briefly examined in the context 
of radiation damage of crystals. In Section 3 the form of the (intrinsic) 
reaction rate for the simple case of equally-spaced reactants is studied. In 
particular, . the steady-state reaction-rate (16) and particle densities (17), 
and the time-dependence of the reaction rate (19) are derived. Finally, 
in Section 4 fluctuations in the initial particle positions are treated. The 
distribution function fr t) is found and used to derive the forms of 
the intrinsic and extrinsic reaction rates, (24) and (25) respectively. The 
appendix shows how the calculation in Section 2 may be translated into 
the second-quantisation formalism and relates the mapped system to the 
algebra SUq(2). 

II. THE P A I R - R E A C T I O N  P R O B A B I L I T Y  

The main result of this section is the derivation of the (m, n) pair 
annihilation probability P(m,n), Eq. (12). In Section 1, it was noted 
that this quantity is independent of the initial positions of the particles, 
depending only on their relative order. Making use of this fact, a simpler 
system can be treated, that still preserves the order that the A and B 
particles pass through each other. 

Consider now a one-dimensional, semi-infinite lattice (with sites 
n = 1, 2 . . .  ) with a B particle initially occupying each site. At discrete time 
steps ( m =  1, 2 . . .  ) the mth A particle is "shot" through the B array, 
passing sequentially through each site until its eventual annihilation, see 
Fig. 1. An A particle either moves through a site with a B present with 
probability q, or reacts with a B at that site with probability p. Once an 
A and B pair have reacted, the site that the B occupied becomes vacant 
and any subsequent A that passes through the vacant site does so with 
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probability 1. This whole process, of a single A passing through the lattice 
and eventually reacting, is considered to happen in a negligible amount of 
time. This mapped system is merely a deformation of the coordinates used 
in the original model, so both systems share the same pair annihilation 
probability P(m, n). 

It is useful to consider the statistics of the positions of the m vacancies 
that exist in the lattice immediately after the m th time step. The positions 
of these vacancies are labelled (n~ ...nm), where it is important to note 
that the subscript used refers to the relative positions of the sites, i.e., 
n~ <n2 < - - .  <nm, and not which A particle caused the vacancy at that 
position. 

The rest of this section is devoted to the calculation of P(m, n), the 
probability that the m th A reacts at site n. First, the probability of a 
particular distribution 7tm(nt . . .  n,,) for the positions of the m vacancies is 
derived, Eq. (3i. These probabilities can be used as a convenient basis, in 
the sense that all other probabilistie quantities may be expressed as linear 
combinations of the { ~,,}. This basis is then used to find the expected 
vacancy~density Vm(n) at site n, after rn A particles have passed, Eq. (9). As 
an aside, a parallel is drawn between this simplified model and a crystal 
that has been damaged by radiation. In particular, it is shown that the 
damaged region described by Vm(n) propagates like a soliton through the 
B array, Eq. (10). Finally, the discrete gradient of V,,(n) is then used to 
calculate the required quantity P(m, n), Eq. (12). The method described 
below translates into the second-quantisation formalism and shows the 
system to be described by the algebra SUq(2). The techniques used in this 
formalism are briefly reviewed in the appendix. 

A. The Basis for the mth Time Step q~m 

The probability ~,,,(n~ ...nm) that after m A particles have passed 
through the B lattice vacancies exist at sites n~ < n 2 < - . .  <nm is now 
derived. Consider first the simplest case m = 1, i.e., just after the first time 
step. The probability that the A particle has annihilated with a B on site 
n~ producing a vacancy there is 

7tl(nl) = pq,, ,-  l = (q - i  _ 1) q", 

where p is the probability a single reaction could occur, and q = ( 1 -  p). 
Now consider the state of the system after the second time step, i.e., 

after a total of two A particles have passed through the B lattice. Vacancies 
now exist at sites n~ and n 2 (where relabelling may be necessary to ensure 
that n~ < n2). There are two histories that contribute to this configuration, 
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each with different probabilities. Either a vacancy first appeared at site n 2 
and then the second one at site n~, or the first vacancy at site n~ and the 
second at site n 2. The probability of the first history is just the product 
~l(n~) ~ (n2)  as the second A particle does not pass through the vacancy 
produced by the first A particle. However, in the second history described, 
the second A particle does pass through the vacancy at n l, increasing its 
chance of reacting with any site n > n~ by a factor of q-~. Therefore, 

~2(nt, n2) = ~l(nl)  Wl(n2) + q - l ~ l ( n l )  ~r-/l(n2) 

~2(nl, n2)=(1 + q - l )  ~l(nl)  ~/1(n2) 

~2(nl, n2) = ( q - 2 _  1)(q-i  _ 1) qnl +n., 

(2) 

It is simple to generalise to the m-vacancy basis 7"m(n~ "" n,,,). The states 
at the ( m - 1 ) t h  time step that can contribute to an m th time step 
configuration are those with vacancies at (n2 ""nm), (nl,n3.. .nm),. . . ,  
(n I ..;nm,_:.l). In each of these cases, to produce the final state (n~ ...nm) 
the m th A particle must react with sites n l, n2 ""nm respectively. Therefore, 
taking account of how many vacancies the m th A particle must pass 
through in each case, a relation between the bases that describe the system 
after time steps ( m -  1 ) and m can be written 

~,,,(nl...  n,,) = ~l(nt)  ~m-l(n2" '"  nm) 

+ q - I ~ l ( n  2) ~ , , _ t ( n l , n 3 . . . n m ) +  ... 

+q--(m--l)~l(nm) ~-/m_l(nl,n2...Hm_l) 

Assuming that it is possible to write ~ m - , =  Cm_ ~I-Ijm--t ~ ~~  j )  and using 
the result (2), the form for general m follows by induction 

m m 
~,,(n~ ... n,,) = (1 + q - l  + ... q- (m-  1)) Cm_l I-I ~l(nj) = Cm I'I ~J'(nj) 

j---I j - - I  

(3) 

m[ ] m 
~,,(n,...nm,=ji_iI.= ~_~-1_1 ~,(nj,  =IIj=, I ( q - J -  1) q "j] 

Hence, the distribution of the m vacancies is given by a product of 
exponentials in the site labels, with care being taken to preserve the order 
n~ <n 2 < ... <n, ,  in any sums that they appear. 
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B. The Vacancy  Density V,,,(n) 

The probability that a vacancy is found at site n after m A particles 
have passed through the lattice, Vm(n),  is now derived. This density is given 
by the sum of all the ~m that include a vacancy at the site n, 

m 

Vm(n) = ~ ~ m ( n t  " " , nk = n, . . .  nm) 
k = l  

where the notation ~ is used to denote an internal sum over all the unfixed 
variables, i.e., any nj with j :r that respects the order n l < n2 < .-. < nm. 

Hence, 

~m(n, . . . , n k = n  , . . .nm) 
t 

n - - ( k - -  1) n - -  1 ~ 

-- ~ "'" ~ E "'" E ~ I t m ( n l ' " , n k - - n ,  " " n m )  
n l - ' l  n k - l - - n k - 2 + !  n k + l - - n + l  n m = n m - l + l  

(4)  

For the case m = 1, the vacancy density is simply V ~ ( n ) =  ~ ( n ) .  However, 
after the second A particle passes through the B array a sum must be made 
over the unfixed variables 

VE(n) = ~t2(n, = n, n2) + ~2(n,,  n2 = n) 

oo n - - I  

Vz(n)= Z ~2(n, =n ,  n2)+ Z ~ t z ( n , , n z  = n )  
n 2 - - n +  I nl = I 

Vz(n) = (1 + q - l )  7t(n)  7t,(J) + Z ~,(J)  
----- 1 j = l  

V2(n) = q,,(q -2 _ 1 ) ~ , ( j )  - ~ ( n )  
1 

V2(n) = q"(q-~ - 1)(1 - V , ( n ) )  

The density for m = 2 is therefore related to the m = 1 case, by making use 
of the product form of ~2. It is possible to generalise this result and obtain 
a recursion relation. The following two results will prove useful. First the 
product form of ~m is used to relate ~gm to ~m-- 

~gm(nl " " ,  nk = n, . . .  nm) -- q , ( q - m  __ 1) ~ m - l ( n l  " ' ' n k _  l, nk + 1 " '"  n m )  

(5)  

822/89/3-4-20 
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Second, a slightly less trivial result, that nevertheless has a simple inter- 
pretation 

m 

E ~ l m - l ( n l ' " n k - l , n k + l ' " n m )  
k=l 

m - - I  

=-1--  ~ ~ m _ l ( n l  " . , n , = n ,  . . . n " _ , )  =- l -  Vm_, (n )  
k = l  

(6) 

The LHS of this equation is the sum of all the 7',._ ~ that do not include 
a vacancy on site n. This is simply the sum of all possible ~m-1 ( =  1 by 
normalisation) less those that include the site n; the statement on the RHS 
of (6). The ~'s in this equation are identical to those in Eq. (4) in as much 
as they involve an ordered sum over all unfixed variables. However, it 
should be noted that, though on the LHS the term nk = n has been factored 
out by using (5), the order restriction still holds, i.e., n k_~ < n  and 
nk+~ >n. 

Both these results generalise the method used already to find V2(n). 
Therefore, for the case of m vacancies 

m 

Vm(n) = ~ ~m(n,  " " , nk = n, . "  n m )  

k = !  

m 

Vm(n)=q" (q  - m -  1) ~ Om_, (n ,  " " n k - , , n k + l  " "nm)  
k - - I  

Vm(n)=q" (q  - m -  1 ) ( 1 -  Vm_,(n) )  

(7) 

(8) 

The recursion relation (8) can be solved, with the initial condition 
Vl(n) = ~ ( n ) ,  to give the vacancy density at site n after mA particles have 
passed through the B array 

mira ] 
Vm(n) = - ~ I-[ (q" - q , , -k)  

j = i  k - j  

= q(n-m)j (qm q,)  

j=o k = O  

(9) 

Interestingly, in the limit of large m (in particular q m ~  p)  the vacancy 
profile depends purely on the difference s = ( n -  m). Interpreting the system 
as a crystal (the B array) that is being damaged by incoming radiation 
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(the A particles), this implies that the interface between the damaged and 
undamaged regions reaches a steady-state moving profile 

oc 

lira V,,,(n)= V(s)=q s ~ (_qS)j  qjtj+,)/2 (10) 
m ---* c ~  7" - - - -0  

~ �89 1 - tanh(ps/2 )) + O(p) ( 11 ) 

where the second equation becomes valid in the case of low reaction prob- 
ability p ,~ 1 and is analytically continued for s < 0. Therefore, the damaged 
region propagates like a soliton through the B array. 

C. The Pa i r -React ion  Probabi l i ty  P(m, n) 

The difference between the vacancy density at site n just after the m th 
and ( m -  1)th time steps is the probability that at the m th time step an 
annihilation occurs at site n. This is the required pair reaction probability 
e(m,n). 

P(m, n)= Vm(n) - V,,,_ ,(n) 

• 1 P(m, n)=q~.-m) q~,,-m)J(1 __qj+ l) (q,.__qJ,) 
)----O k - - - - - I  

(12) 

which is the main and final result of this section. For the case studied in 
ref. 9, i.e., q = 0, this result reduces to a delta function as expected, i.e., 
P(m, n)=fi(m, n). In the next section P(m, n) is used to study the original 
model described in Section 1, with equal spacing between neighbouring 
reactants at t = 0. 

III. THE REACTION ZONE W I T H O U T  C U R R E N T  
F L U C T U A T I O N S  

Reverting back to the original model described in the first section, 
P(m, n) is reinterpreted as the probability that an (m, n) pair of particles 
mutually annihilates in a system of ballistically moving reactants. In this 
section, the model is studied with the initial conditions y , , , = - m Q - t  and 
zn= no -~, i.e., with no fluctuations in the particle currents. The point of 
intersection of an (m, n) pair of trajectories is therefore 

x = x~ = (n -- m)/2Q t = (m + n)/2cQ (13) 

i.e., reactions occur only at discrete positions and times. The lack of fluc- 
tuations in the currents negates the need to discuss the extrinsic behaviour, 
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as the intrinsic reaction zone will not wander stochastically. In fact as 
~ i  = ~E for these initial conditions, the zero current-fluctuation reaction 
zone will be denoted by ~0 to avoid confusion with Section 4. The steady 
currents also mean that the centre of the overlap region is always at the 
origin, and therefore x~=x in this case. As will be shown in the next 
section, even when current fluctuations are taken into account, the form of 
the intrinsic reaction rate remains the same as for this case, as long as x~ 
is then measured from the centre of the stochastically moving overlap 
centre seen in Section 4. 

In the rest of this section several aspects of Eq. (12) are studied. First, 
the steady-state reaction rate (16) and particle densities are derived (17). 
Second, the dynamics of P(m, n) in the O(p) approximation is studied and 
the system is shown to decay to the steady state in finite time (19). Finally, 
the correlations in the reaction zone are briefly discussed,-with reference to 
the mean-field and O(p) approximations. 

A. The Steady-State Limit and O(p) Time Dependence 

After a sufficient length of time, characterized by qm,~ p, Eq. (12) 
becomes a function of ( n -  m ) =  s only. This is in much the same way as 
for Eq. (10) and can also be interpreted as a late-time or steady-state limit. 
Therefore, for large m (or n by symmetry) any (m + l, n + 1) pair will have 
the same probability of reacting, regardless of the value I takes, 

o o  

lim P(m,n)=P(s)=q ~ ~ [(--qS)JqJ~J+lVZ(1--qj+l)] (14) 
m - - *  oo j - - O  

P + O ( p  2) (15) 
P(s) = 4  cosh2(ps/2 ) 

The production rate of ~ particles at a position x~= s/2Q can now be 
found, namely cQP(2x~Q). However, the nature of the initial conditions 
means that reactions can occur only at discrete positions (s =0,  _+ 1. . .  ). 
So, to derive the reaction rate ~O(Xr) which is the production rate per unit 
space, a coarse-graining is made over a length scale Q-l 

~o( Xr) = 2cQ2P( 2xrQ ) (16) 

This reaction rate (characterizing the intrinsic reaction zone) is shown 
graphically in Fig. 2 for p - q  = 1/2 with comparison made between the 
O(p) and mean-field approximations (to be described below). The particle 
densities can also be found, given that [ 1 -  V(s)] is the probability a B 
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particle still exists just after a reaction occurs at site s (and similarly for the 
A particles). Therefore, the density profiles QA(xr) and QB(xr) in the steady- 
state are 

QA(X~) = Q[ 1 - V( - 2Qx~) ] and Qn(x~)=Q[1-- V(2Qx~)] (17) 

These profiles are also shown, for the same parameters q =  p = 1/2, in 
Fig. 2, with comparison made to the O(p) approximation. 

To examine the passage to the steady state, it is illuminating to derive 
the time dependence of (12) to first order in p, i.e., take the limit p ,~ 1 in 
Eq. (12) but still keep m finite. 

P(m, n) = p(2 cosh(p(n-m)/2)-exp-p(m+n)/2) -2 + O(p 2) (18) 

~lO(Xr, t~= PcQZO(cQt-- 1 --Q [X~l) + O(p 2) (19) 
2(cosh(pQXr) -- exp - P~") 2 

where O(u)= 1 or 0 for u>~0 or u < 0 ,  respectively. It is clear that the 
system reaches a steady state exponentially quickly (a characteristic of 
systems with short-range correlations) with a decay time (pcQ) -~. To 
leading order in t, this exponential decay time will also be a feature of the 
model with randomly distributed particles to be examined in Section 4. 

B. Correlations, the O(p )  and Mean-Fie ld  Approximat ions 

The first order in p approximations (11), (15), (18) and (19) valid for 
p ,~ 1 represent the case where each particle passes through very many of 
its opposite kind before finally annihilating. In this p ,~ 1 limit it could 
therefore be expected that a mean-field approach becomes exact. For the 
reaction model the mean-field approximation is one that neglects density 
correlations in the reaction zone. It assumes that the probability of a reac- 
tion occurring depends on the product of the probabilities that an A and 
B particle are present, i.e., that the A and B densities are independent 
statistical quantities. Therefore, given that [ 1 - Vm_ l(n)] is the probability 
that the n th B has not annihilated before meeting the m th A particle (and 
similarly for the m th A particle by symmetry), the mean-field approxima- 
tion is 

Pmf(m,n)=p[1- V._ , (m)] [  1 - Vm_t(n)] 

Pm/(S)=p[1-- V(s--1)][1- V(s+ 1)] 
(20) 

where the second equation is the steady-state limit. From these equations 
it can be seen by substitution that the O(p) approximations (valid only in 
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the limit p - ,  0) are indeed mean-field like. Though, this is not to say that 
the O(p)  and mean-field approximations are equivalent outside the small p 
limit, as can been seen in Fig. 2 where comparison can be made for p = 0.5. 

For the p ,~ 1 case, the reaction zone will be much larger than the 
interparticle spacing, and any structure will slowly vary with the variables 
m or n. Therefore, the O(p)  approximations can also be captured from the 
continuum mean-field equations 

aQA aQA 
at -- c -~x -- r Q "4 Q B 

C3QB aQB 
c3t = +c--~-x -- rQ,4QB 

where r is the reaction parameter. However, the full results (9), (10), (12) 
and (14) cannot be obtained by such a mean-field approach, as can be seen 
in Fig. 2 where Pm1(s) and P(s) are compared. The figure shows that the 
correlations are strongest in the centre of the reaction zone and decay 
quickly towards the edge of the overlap region. 

Interestingly, a similar cross-over to mean-field behaviour is also seen 
in the case of diffusive reactants (~2) in the limit of high diffusivity and low 
reaction rate. The interpretation, of many interactions between particles 
before final annihilation occurs, is the same. 

(i) Reactant Density in the Steady State 
for the Intrinsic Reaction Zone. 

- i 

0.0 ' 

-10 -5 0 5 10 
distance from overlap centre 

0.2 

0.0 
-10 

(ii) The Intrinsic Reaction Zone 
in the Steady State. 

, = �9 = �9 

C~"~R rtact/om rate 

- - -  o00 

-5 0 5 10 
distance from overlap centre 

Fig. 2. (i) The steady-state density profiles of the A and B reactants at xr = s/Q for the case 
p = q = 1/2. The densities given in Eq. (17) involve the vacancy densities (10) for the exact case 
(circles and squares) and (11 ) for 'the O(p) approximation (dashed lines). (ii)The steady-state 
reaction rate at position Xr = S/Q, again for p = q = 1/2. The the exact result (circles) is given 
in Eq. (16) with xr measured from the origin, or in Eq. (24) with x~ measured from the centre 
of the fluctuating overlap region. Also plotted are the mean-field (triangles) and the O(p) 
approximations (dashes) given in Eqs. (20) and (19) respectively. Comparison between the 
exact and mean-field results show the reaction rate to be most correlated at the centre of the 
overlap region. 
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IV.  I l l : A C T I O N  Z O N E S  

In this section the case of fluctuations in the initial conditions is 
treated (though still with each species initially segregated to either side of 
the origin). This allows the intrinsic and extrinsic reaction rates for the 
system with fluctuations in both reactions and particle currents to be 
found, Eqs. (24) and (25). 

The initial positions of each species of particle are chosen to be 
uncorrelated with an average spacing Q-~ and are described by Poissonian 
distributions with the variances of the interparticle spacing being Q-2. 
Hence, both y,,, and z,~ the initial positions of the mth A and nth B 
particles, can be written as sums of independent random numbers 

Y,,,=(Ym--Ym--~)+(Ym--t--Ym--2)+ "'" +(Yz--Y~)+(Y~--O) 
z . = ( z . - z . _ , ) + ( z , , _ , - z . , _ ~ ) +  . . .  + ( z ~ - z , ) + ( z , - O )  

The central limit theorem can now be used, stating that for large m and n 
such sums of many independent random numbers, drawn from the same 
distribUtions, become the Gaussians 

~t(ym) ocexp ( ( Q Y ' " + m ) 2 )  Y'(z,,)ocexp ( (QZ" -- n)2) 
- 2 m  --  2n (21 ) 

The probability density for the ruth A and n th B trajectories to intersect at 
position x and time t (the function ff,,,,,(x, t) defined in Section 1) is now 
easily calculated. As both x and 2ct  are linear combinations of independent 
Gaussian variables, for s ,~ m their distribution functions are also Gaussians 
with means and variances linear combinations of those in Eq. (21 ) 

2cQ2 ([(2Qx--(n--m))2(2cQt--(m+n))2]) 2(m + n) 2(m +n)  
f#m,( X, t ) = rc( n + m-------~ e x p  - + (22) 

Before calculating the intrinsic and extrinsic reaction rates for p < 1, 
the deterministic case p -  1 examined in ref. 9 is first reviewed. Because in 
this case, the reaction probability P ( m ,  n ) -  ~,,,,, the two domains of A and 
B particles never overlap and only an extrinsic reaction rate can be 
meaningfully defined. The probability density for reactions to occur, i.e., for 
(m, m) pairs to intersect, at (x, t) is given by 

O(3 0(3 

m = l  n = l  

cQ 2 
(23) 



792 Richardson 

in the limit of large m. This is the extrinsic reaction rate for the p = 1 model 
and it implies the reaction front is a Gaussian random walker, covering a 
typical distance ~(ct/Q) ~/2 in a time t. 

For the general case p ~< 1 the points of intersection of these (m, m) 
pairs will be used as a convenient definition for the centre of the stochasti- 
cally moving reaction zone. The forms of the intrinsic and extrinsic reaction 
rates can now be calculated. 

A. The Intrinsic Reaction Rate 

The intrinsic reaction rate as defined in Section 1, is the reaction-rate 
profile seen in a single realisation of the system's evolution (measured 
relative to the centre of the A and B domains' overlap region). In this 
section it will be argued that, if reactions are measured relative to the 
position of the (m, m) pair intersections, the intrinsic reaction rate is on 
average eqiaal to ~'0, the reaction rate for the zero current-fluctuations case 
examined in Section 3. 

Consider the set of intersecting particle pairs that can be written 
( m - k ,  m + k) with m fixed and k varying. These pairs all share the same 
average time of intersection. Therefore, it is convenient to define the 
relative coordinates of intersection (x~, t~) of these pairs to the central 
(m, m) pair 

2Xr-- (Ym_k'+" Zm+k) -- ( ym nt" Zm) 2Ctr=(Zm+k-- y m _ k ) - - ( Z m - -  Ym) 

x~ = kQ - l + O(k I/2 Q -- I ) t ~ = 0 + O(k i /2 (  2cQ ) - ~ ) 

where the O(k 1/2) deviations are those expected from the Gaussian fluctua- 
tions (21). As the deviations are not functions of m, the noise in the 
particles' initial positions does not produce any time-dependent dispersion, 
i.e., the statistics of the pair intersections in the overlap region reach a 
steady-state. The relative time and positions are on average the same for 
the equally-spaced case seen in Section 3, though the Gaussian fluctuations 
about these average values , introduce a ~ kl/2Q -1 uncertainty in the posi- 
tion of the reactions. However, this broadening is not sufficiently strong 
to disrupt the ~0 profile if the inequality p l/2~ 1 is satisfied, i.e., if the 
width of the reaction zone is much greater than the broadening. Rather, 
the fluctuations act to smooth the discontinuous nature of the equally- 
spaced reactant currents, for which a coarse-graining was necessary in 
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Section 3. Therefore, from Eq. (19) the steady-state intrinsic reaction 
rate is 

~t(x~)  = 2cQ2p(2QXr) 

2 
pcQ 2) 

"~I(Xr) = 2  cosh2(pox~) + O(p 

(24) 

It also follows that the particle streams have the coarse-grained density dis- 
tribution seen in the ordered case. Hence, Fig. 2 also represents the profiles 
seen in the case with Gaussian fluctuations in the particle currents. 

The width of the intrinsic reaction zone is ~(po)  -~ and from (23) in 
a time A T  it will typically move (as a whole) a distance ~(cAT~o)  ~/2. 
Hence, any measurement made of the ~ production rate must have 
A T , ~ ( p % 0 )  -~. Such a restriction can indeed be satisfied, and the 
production rate that (24) predicts can be clearly seen in a Monte Carlo 
simulation of a single system, i.e., the system is self-averaging. 

In the above analysis the steady state was assumed for the intrinsic 
reaction rate calculation. However, the arguments also follow through if 
the time-dependent intrinsic rate (19) is used, for p << 1. The width of the 
intrinsic reaction zone W~ therefore varies as 

W~ oc ( ct ) for t << t z 

Wz oc (pQ)-~ for t>> t~ 

where t l =  (pcQ) -~ is the relaxation time for the intrinsic rate given in the 
previous section. Hence, at early times the width increases linearly, until 
finally saturating at a finite time-independent width. 

It is unlikely that the present model studied is in the same universality 
class as the case of diffusive reactants. However, it is interesting to note 
that the asymptotics of the intrinsic reaction rates derived for the diffusive 
case and in the present case of ballistic reactants are both of the same form 
~ e - "  Ixt, in the steady state. 

B. The Extrinsic Reaction Rate 

The extrinsic reaction rate, defined as the reaction rate at (x, t) 
averaged over all possible evolutions, implies an average over all the 
appropriately weighted initial particle positions { y} and { z}. It is therefore 
equivalent to the sum of probability densities for any (re, n) pair to 
annihilate at (x, t). After the intrinsic reaction rate has relaxed to its 
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steady-state limit, i.e., for times t >> t t, the extrinsic reaction rate can be 
expressed purely as a function of s = ( n -  m) 

~E(x, t) = ~ ~ P(m, n) fgm.(X, t) 
m n 

lim ~lr(x, t ) =  ~ P(s) ~#s(x, t) 
t ---~ oo  

de 

The function (#s(X, t) is.the probability density that an (m, m + s) pair meet 
at (x, t) for any value of m with s fixed, in the limit t >> (cQ) - t  

fas(x,t .)=lim ~ cq.2 
t--. oo ~m 

m = l  

(-1 ) 
exp "~m ( (2Qx - s) 2 + ( 2c0 t - 2m ) 2 ) 

cQ 2 ( - ( 2 Q x - s )  2 ) 
f~s(x' t)= fzrcQtexp 4cQt 

Therefore, the extrinsic reaction rate can be written as a convolution of the 
intrinsic rate over all the allowed paths the intrinsic reaction zone can take 
(each being weighted by a Gaussian). 

~le(x, t)= ~ .,. =E_oo P(s) exp 4cot 

- (2Qx-  s) 
/ p 2 c ~  3 oo exp 4cQt 

~te(x, t ) = 1  16m ~ cosh2(ps/2 ) + O(p 2) (25) 

A second characteristic time te=(p2cQ) -l is now introduced into the 
system by the Gaussian noise. This is the timescale on which the uncer- 
tainty in the position of the intrinsic reaction zone becomes equal to its 
steady-state width, i.e., the standard deviation of the position of the 
reaction zone's centre is of the order (pQ)-~. For t << te the extrinsic and 
intrinsic rates are effectively the same, ~/s there is little broadening. 
However, for times t >> tE the noise in the particle currents dominates, the 
extrinsic reaction rate becomes a Gaussian and the result (9) is recovered. 
This is not surprising as for these times the structure of the intrinsic zone 
is unimportant and can be considered a point-like random walker. The 
width We of the extrinsic reaction rate as a function of time is therefore 
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WE oC (Ct) for t << ti 

We oc (po) -~ for t~ << t << tE 

We w. ( ct/Q ) 1/2 for t >> te 
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where t i= (pco) -1 and t e= (p2co)-~. The asymptotic behaviour (large x 
values) of the extrinsic reaction rate also has distinct forms as a function 
of time 

~ ~ O( c t  - Q Ixl) for t << tI 

:~e ~ e -~ Ixl for ti << t << t e 

~E '~ e - b x 2 / t  for t >> tz 

Hence, there is a cross over from exponential to Gaussian behaviour at late 
times. 

V. D I S C U S S I O N  

In the present work, a new model for the reaction system A + B ~ 
with ballistic reactants has been introduced and solved exactly. The model 
includes two types of noise, in the reactions (due to the reaction probability 
being less than one) and in the currents of particles (due to disorder in the 
particles' initial positions). These fluctuations allow some of the charac- 
teristics of real systems to be exhibited, including a fluctuating A and B 
overlap region where the reactions occur, and a reaction zone that moves 
stochastically throughout the system. Comparison was made between the 
present model of ballistically moving reactants and that of isotropically dif- 
fusing reactants tl2~ studied under the RG framework. In particular, it was 
noted that the intrinsic reaction rates (the dynamic reaction region formed 
between the fluctuating A and B domains) have the same asymptotic form, 
though it is unclear if the two systems share the same universality class. An 
important physical difference between these two cases is that, in the 
ballistic model, particle order is preserved and interactions between a given 
pair of particles can occur only once. It would therefore be interesting to 
study the case of reactants that perform biased diffusion, because such a 
system would interpolate between the cases of isotropic diffusion and 
ballistic motion of reactants. As shown in the appendix, the method out- 
lined in Section 2 can be translated into the second-quantisation formalism 
with the vacancy dynamics described by the SUq(2) algebra. Using the 
tools available in this formalism it may be possible to introduce interaction 
terms in the evolution operator that break the order of the particles, 
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thereby introducing a bias-diffusive component into the otherwise deter- 
ministic motion. 

Another case for further study would be to examine more closely the 
relation between the present model and the partially-asymmetric exclusion 
process (PASEP) with reflecting boundaries~also described by SUq(2).~24) 
The present model displays short-range correlations, as does the PASEP 
with reflecting boundaries. However, the PASEP with open boundaries is 
known to have three phases, (25-29) one of which has long-range power-law 
behaviour. It would therefore be interesting to see if the open system also 
translates into a system of reacting particles. 

A P P E N D I X .  " ' S E C O N D - Q U A N T I S A T I O N ' "  F O R M U L A T I O N  

As stated in Section 2, the method used to calculate P(m, n) can be 
viewed in terms of quantum-mechanical interacting particles. Here this 
formulation is briefly reviewed and the recipe for calculating quantities of 
interest is described. 

The s3,stem studied in Section 2 consists of a one-dimensional lattice 
with sites numbered 1, 2..., etc. A lattice site k, described by the binary 
variable r/k, can either be occupied by a particle or a vacancy. If a vacancy 
is present at site k then r/k = 1, otherwise r/k = 0. Hence, the state of a single 
system is described by the set of variables r / -  { qk-} and can be represented 
as a vector in a Fock space, i.e., 

I~) = I~,, ~ ,  " "  w . . . .  ) 
oo 

(~ '  I~> = I-[ ~(~-, ~ ) =  ~(~', ~) 
k = l  

Initially the system is full of B particles, represented by the state 10). The 
evolution of the system involves an A particle being "shot" through the B 
array at time steps m = 1, 2..., etc. Each A particle passes through a B with 
probability q, or annihilates with the B with probability p. If no B is pre- 
sent at a site the A particle passes through to the next site with probability 
one, see Fig. 1. After each time step m, the system will have some probabil- 
ity Pro(r/) of being in the state r/. The vacancy creation and annihilation 
operators are now introduced 

E ] C ~ l . . . O k . . . ) =  p I-I 'q"- 'h)  I ' " l k ' " )  
i = 1  

1 -I C k l ' " l k - " ) =  p qt'--,h) [ ' ' ' O k ' ' ' )  
i = 1  
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with the auxiliary relations C~ I"" l k . . .  ) = Ckl""  Ok' ' '  ) = 0. Defining 
the q-commutator as [A, B ] q = A B - q B A ,  the following commutations 
relations hold for n t < n2 

ECn+l ' Cn+2]q-'~[Cn2 , C+nl]q-'--[Cnl , C + ] q  _' Cnl]q'~'O 

[ c , , ,  c . + ]  + = 1 
(26) 

where the final anticommutator is for same-site operators. These commuta- 
tion relations provide a representation of SUq(2), i.e., "q-deformed" spin- 
half particles. ~28~ The evolution equation for the system can now be written 
in terms of these vacancy creation and annihilation operators 

IPm) -- ~ Pm(rl) It/) = 7~"' 10) 
q 
oo 

~=Z c: 
k = l  

where ~ is the evolution operator. Introducing the left state (S[ = ~ , ,  (r/'[ 
any observable A(P,,,) represented by the operator A can be written in the 
following way 

<si  A~'" 10> = ~  ~ <q'lq> A(q) Pm(q) 
q' q 

( S [  2 ~ ' m  10) ~" Z A ( ~ )  Pm(/']) 
q 

In evaluating such observables it is useful to use a factorisation charac- 
teristic of the creation operators. If a string of creation operators is 
arranged, such that each operator acts in descending order (with respect to 
its subscript) on the right empty state, then the following property can be 
used 

( sI  an+, c,, + . . . c  + 10> = ( s I  c,, +, 10><sI c,, + 10) . . .  <sI c + 10) tim _ r/m (27) 

where the single-vacancy expectations are simply (SI C~- IO) = pqk-t.  
In the formalism described above, all quantities expressible in terms of 

operators can be evaluated. Therefore 

..., = c + 10) V(n,, nm) <sl Z c~c~....~ 
perms 

Vm(n ) -- ( S] C :  C n ~,m IO) 

m(m, n) ~" ( S I C :  ~,m-- I IO) 
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are the forms for each of the objects calculated in Section 2. These can be 
evaluated by using the commutation relations (26) in the following way. 
Firstly for a given string, commute all annihilation operators to the fight 
of the string. These objects when acting on the left state (SI will leave 
strings containing only creation operators. These strings can then be 
rearranged by using the appropriate relation in (26) so that they act on the 
zero state in descending order of subscript. Finally the factorisation 
property (27) can be used to calculate the expectation value. 

Interestingly, the algebraic structure outlined here is identical to that 
used in the description of the partially-asymmetric exclusion process 
(PASEP) with reflecting boundary conditions, therefore corresponding to a 
noisy Burgers equation with zero average current. ~24~ Microscopically, the 
PASEP describes systems of particles that hop in a preferred direction with 
a repulsive interaction. Assuming that the particles hopwi th  a leftwards 
bias, the density at site n seen when m such particles are confined to a semi- 
infinite lattice ([ 1: oo ]), is identical to the vacancy density Vm(n) given by 
Eq. (10). 
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